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Abstract
Predictive equations were developed for 19 ecologically 

relevant streamflow characteristics within five major groups 
of flow variables (magnitude, ratio, frequency, variability, and 
date) for use in the Tennessee and Cumberland River basins 
using stepbackward regression. Basin characteristics explain 
50% or more of the variation for 12 of the 19 equations. Inde-
pendent variables identified through stepbackward regression 
were statistically significant in 78 of 304 cases (α > 0.0001) 
and represent four major groups: climate, physical landscape 
features, regional indicators, and land use. Of these groups, 
the regional and climate variables were the most influential 
for determining hydrologic response. Daily temperature range, 
geologic factor, and rock depth were major factors explaining 
the variability in 17, 15, and 13 equations, respectively. The 
equations and independent datasets were used to explore the 
broad relation between basin properties and streamflow and 
the implication of streamflow to the study of ecological flow 
requirements. Key results include a high degree of hydrologic 
variability among least disturbed Blue Ridge streams, similar 
hydrologic behaviour for watersheds with widely varying 
degrees of forest cover, and distinct hydrologic profiles for 
streams in different geographic regions. Published in 2011. 
This article is a US Government work and is in the public 
domain in the USA.

Introduction
Implicit in ecological flow research is a deceptively 

simple conceptual model: Landscape factors, including 
climate, land cover, soil properties, and physiography, drive 
hydrologic response (streamflow), which in turn helps deter-
mine ecological outcomes, notably the composition, diversity, 
and resilience of riverine and riparian ecosystems. Streamflow 
thus links the broader landscape to ecological conditions in 
and near the stream channel. Because a stream’s hydrologic 

response can be altered directly though water withdrawal or 
stream-channel modification (impoundment, dredging, filling, 
realignment, etc.) or indirectly through basin-scale changes in 
climate, land cover, and other landscape factors, better under-
standing of the relations among landscape, flow, and ecologi-
cal health is a critical scientific and management need. Early 
workers in the field focused on establishing threshold values 
for specific flow characteristics required to maintain a mini-
mum acceptable level of ecological integrity (Westgate, 1958; 
Rantz, 1964; Hoppe and Finnel, 1970; Tenant, 1976). More 
recently, a series of widely cited papers has urged analysis of 
the ecological function of a broad range of flow characteris-
tics (flow regime) operating across a similarly broad range of 
temporal and spatial scales (Poff et al., 1997, 2010; Arthington 
et al., 2006).

Researchers seeking to implement studies linking eco-
logical function to hydrology encounter a number of concep-
tual and practical challenges revolving around the essential 
complexity of flow regime. Early use of the term ‘regime’ in 
relation to streams was explicitly concerned with channel form 
and sediment transport (Bryan, 1922; Blench, 1957; Langbein 
and Iseri, 1960). In ecological flow studies, flow (also stream-
flow or hydrologic) regime is used somewhat more narrowly 
to represent what Langbein and Iseri (1960) call a stream’s 
‘habits with respect to velocity and volume’, in other words, 
the characteristic patterns of flow variation at a point along a 
stream. Description of flow regime thus encompasses the full 
suite of streamflow statistics (flow characteristics) character-
ized by measures of water yield, timing and frequency of 
flows, and all other aspects of hydrologic response, integrated 
across time scales ranging from instantaneous to millennia. 
The US Geological Survey’s (USGS) StreamStats program for 
estimating flow characteristics in 23 states solves more than 
2000 individual equations (Ries, 2007; http://water.usgs.gov/
osw/streamstats/ssonline.html), but few hydrologists would 
consider it comprehensive.

The questions of which flow characteristics should be 
considered and whether or how to combine them have been 
addressed in a variety of ways, including grouping flow 
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characteristics into functional categories, such as the magni-
tude, frequency, duration, timing, and rate of change in flow 
(Poff and Ward, 1989; Walker et al., 1995; Richter et al., 
1996; Poff et al., 1997); programs for calculating suites of 
flow characteristics as potential ecological drivers (Swanson, 
2002; Henrikson et al., 2006); stream classifications based 
on flow characteristics and environmental variables (Ros-
gen, 1994; Puckridge et al., 1998; Kennen et al., 2007, 2010; 
Hoos and McMahon, 2009; Kennard et al., 2009; Henriksen 
and Heasley, 2010); and screening of flow characteristics for 
statistical independence and ecological relevance (Olden and 
Poff, 2003; Knight et al., 2008; Acreman et al., 2009; Gao et 
al., 2009). Despite such efforts, the unwieldy number of flow 
characteristics and the lack of a common framework for evalu-
ating their relative importance or combining them into a single 
representation of flow regime has impeded the drawing of 
general conclusions from an expanding literature of ecological 
flow studies (Poff and Zimmerman, 2010).

A practical challenge to relating flow regime to stream 
ecology is the relative sparseness of streamflow data in spatial 
and temporal terms. As of 2009, the USGS operated about 
7700 active stream gauges in the United States or about one 
stream gauge per 1200 km2, of which fewer than half had 
periods of record exceeding 40 years in length (D. Stuart, 
USGS, written communication, 2010). Biological data are 
typically collected on a much finer spatial scale. For example, 
Kennen et al. (2010) analysed 856 invertebrate sites across 
a 21 000 km2 study area (1 site per 2.45 km2). Knight et al. 
(2008) examined temporal and spatial overlap between records 
from about 1100 fish sampling sites and roughly 300 stream 
gauges in the intensely monitored Tennessee River basin (area 
106 200 km2)—one fish site per 96.5 km2 and one stream 
gauge per 354 km2. Only 33 sites met criteria of temporal 
overlap and locations no further apart than 4.8 linear stream 
kilometres. In the absence of suitable hydrologic datasets for 
most sites of potential interest, a consensus has emerged that 
hydrologic models are a crucial tool for quantifying interac-
tions between streamflow and aquatic biota (Poff et al., 2010).

Hydrologic models can take a number of forms. An 
analytical framework proposed by Poff et al. (2010) empha-
sizes the simulation of daily streamflow hydrographs through 
numerical runoff models at the watershed scale. Part of the 
appeal of synthetic hydrographs lies in the flexibility they 
could provide. If a given suite of flow characteristics fails to 
explain ecological variation, a new suite might be derived 
from the simulated record. Watershed modelling has seen sub-
stantial improvements in recent decades (Singh and Woolhiser, 
2002), and simulated hydrographs from regionally calibrated 
watershed models have been used to relate streamflow char-
acteristics to invertebrate diversity and richness (Kennan et 
al., 2010).

Nonetheless, watershed model parameter estimation 
remains problematic. Problems with the reproducibility in a 

priori parameter estimation indicate that more improvement 
is needed before synthetic hydrographs can be generated with 
confidence for many ungauged basins across large regions 
(Hogue et al., 2004; Duan et al., 2006; Schaake et al., 2006). 
Moreover, modellers must choose from an array of alternative 
approaches to evaluate model error, where basin-scale calibra-
tion data are unavailable, none of which are generally accepted 
as definitive (Beven, 2006; Duan et al., 2006).

An alternative modelling approach is the statistical 
prediction of streamflow characteristics based on spatially 
distributed basin attributes. Regional statistical models have 
for decades been the standard approach for general purpose 
estimation of the magnitude, frequency, and duration compo-
nents of flow regime (Benson, 1962a,b, 1964; Riggs, 1973; 
Tasker, 1982; Tasker and Stedinger, 1989; Tasker and Slade, 
1994; Tasker et al., 1996; Law and Tasker, 2003; Ries, 2007; 
Law et al., 2009). The basic modelling approach, using 
multivariate linear regression could equally be applied to flow 
characteristics selected for ecological relevance. Statistical 
models lack the flexibility of simulated hydrographs for evalu-
ating ecological flow requirements, but they offer benefits of 
quantifiable error limits and established diagnostic criteria 
(Helsel and Hirsch, 2002). Despite these advantages and wide-
spread use in general hydrology, regional statistical models of 
flow characteristics have received only limited application in 
ecological flow studies (Sanborn and Bledsoe, 2006; Carlisle 
et al., 2009).

The application of hydrological models of any type to 
questions of ecological flows is in its early stages. General 
conclusions about which models are best suited to address 
which specific ecological questions will require a much larger 
pool of modelling studies across a range of spatial scales, 
regional contexts, and ecological questions. 

This paper presents regional statistical models for 19 
streamflow characteristics for free-flowing streams in the 
Cumberland and Tennessee River basins. Exploratory statisti-
cal and conceptual analysis on limited data have identified 
most (17 of 19) of these characteristics as having presumptive 
ecological relevance (Knight et al., 2008). A broader examina-
tion of the relations between streamflow and aquatic commu-
nities requires the ability to characterize flow regime where 
biological data are available but hydrologic data may not be. 
The models presented here thus represent an intermediate step 
towards such an examination. Further, we use these models to 
explore (1) the dependence of streamflow characteristics on 
specific basin attributes, (2) the potential effects of changes to 
those attributes on watershed hydrology, and (3) the integra-
tion of multiple streamflow characteristics into profiles that 
begin to statistically describe ecologically relevant aspects 
of flow regime for reference conditions at the regional scale. 
Although the models are developed specifically for the Ten-
nessee and Cumberland River basins, the intent is to produce 
models that can be adapted for other locations.
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Study Area

The predictive equations presented in this paper apply 
to sites across the Tennessee and Cumberland River water-
sheds, which drain approximately 106 200 and 46 830 km2, 
respectively, and more than 150 000 km2 combined. The 
Cumberland and Tennessee Rivers are adjacent tributaries of 
the Ohio River, which they join near Paducah, KY (Figure 1). 
Both rivers are regulated along much of their main stems and 
major tributaries. Major and many secondary urban centres 

are located along the main stems, most notably Nashville and 
Clarksville, TN, on the Cumberland River and Knoxville and 
Chattanooga, TN, Huntsville, AL, and Paducah, KY on the 
Tennessee River. Dominant nonurban land cover is forest, 
generally accounting for 50% or more of the total area, with 
pasture accounting for most of the remainder (Hampson et al., 
2000; Woodside et al., 2004).

The Tennessee and Cumberland River basins represent 
a cross section of the area between the Appalachian divide 
and the Eastern Gulf Coastal Plain, including parts of five of 

Figure 1.  Tennessee and Cumberland River watersheds with physiographic provinces, dams, and major urban centres.

MODELLING ECOLOGICAL FLOW REGIME

Figure 1. Tennessee and Cumberland River watersheds with physiographic provinces, dams, and major urban centres.

combined. The Cumberland and Tennessee Rivers are
adjacent tributaries of the Ohio River, which they join
near Paducah, KY (Figure 1). Both rivers are regu-
lated along much of their main stems and major trib-
utaries. Major and many secondary urban centres are
located along the main stems, most notably Nashville and
Clarksville, TN, on the Cumberland River and Knoxville
and Chattanooga, TN, Huntsville, AL, and Paducah, KY
on the Tennessee River. Dominant nonurban land cover is
forest, generally accounting for 50% or more of the total
area, with pasture accounting for most of the remainder
(Hampson et al., 2000; Woodside et al., 2004).

The Tennessee and Cumberland River basins repre-
sent a cross section of the area between the Appalachian

divide and the Eastern Gulf Coastal Plain, including parts
of five of Fenneman’s (1938) physiographic provinces,
listed east to west: Blue Ridge, Ridge and Valley,
Appalachian (Cumberland) Plateau (including Kanawha),
Interior Low Plateau, and Coastal Plain. The Interior
Low Plateau is further subdivided into the Highland Rim
and Nashville Basin physiographic sections (Figure 1).
Topographic slope, regolith thickness, and karst develop-
ment vary substantially across the study area, producing
regional variations in hydrologic response (Hoos, 1990;
Wolfe et al., 1997; Law et al., 2009).

Temperature and precipitation in the study area vary
with longitude and elevation. Average annual temperature
in the area is 13Ð9 °C, while average annual temperatures
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Fenneman’s (1938) physiographic provinces, listed east to 
west: Blue Ridge, Ridge and Valley, Appalachian (Cumber-
land) Plateau (including Kanawha), Interior Low Plateau, and 
Coastal Plain. The Interior Low Plateau is further subdivided 
into the Highland Rim and Nashville Basin physiographic 
sections (Figure 1). Topographic slope, regolith thickness, and 
karst development vary substantially across the study area, 
producing regional variations in hydrologic response (Hoos, 
1990; Wolfe et al., 1997; Law et al., 2009).

Temperature and precipitation in the study area vary with 
longitude and elevation. Average annual temperature in the 
area is 13.9 °C, while average annual temperatures across the 
area range from 11.1 °C in the northern Blue Ridge to 14.4 °C 
in the Interior Plateau. The warmest months of the year are 
July and August, and the coldest are typically January and 
February (US Department of Commerce, 2007a). The Inte-
rior Plateau averages about 1400 mm of precipitation annu-
ally, compared with 1350 mm in the Blue Ridge and about 
1450 mm in the Cumberland Plateau and Ridge and Valley 
(US Department of Commerce, 2007b). Locally, precipitation 
in the Blue Ridge can exceed 2000 mm annually at the highest 
elevations.

Abell et al. (2000, p. 212) regard the Tennessee and 
Cumberland River basins as a single aquatic ecoregion, which 
they describe as ‘contain(ing) the highest level of freshwater 
diversity in North America and (being) possibly the most 
diverse temperate freshwater ecoregion in the world’ (Starnes 
and Etnier, 1986; Olsen and Dinerstein, 1998). This diversity 
includes ‘an extraordinary 231 (fish species), of which 67 
(29%) are endemic. . . a globally outstanding unionid mus-
sel and crayfish fauna. . . are home to numerous species (of 
salamanders), many of which are restricted to the Tennessee-
Cumberland’ (Abell et al. 2000, pp. 212–213).

A wide range of human activities threaten these  popula-
tions. Urbanization, mining, logging, agriculture, and other 
forms of land disturbance alter hydrologic response and 
contribute varying amounts of sediment, acids, bacteria, 
metals, and organic compounds to the area’s rivers (Abell et 
al., 2000). Channelization and impoundments are pervasive 
throughout the Tennessee and Cumberland River basins. The 
resulting flow alteration has degraded or destroyed habitat 
and commonly accelerates channel erosion or sedimenta-
tion (Abell et al., 2000). Master et al. (1998, cited in Abell et 
al., 2000, p. 213) identified more than 57 fish species and 47 
mussel species as being at risk in the Tennessee–Cumberland 
aquatic ecoregion. Aquatic invertebrates, such as the endemic 
Nashville crayfish (Orconectes shoupi), face similar threats 
(Clancy, 1997).

Analytical Approach
Multivariate statistical models were developed for 

each of 19 streamflow characteristics. Taken together, these 
models provide a profile of stream behaviour intended as an 

approximation of flow regime. Further analysis of the effects 
of flow regime on aquatic ecology requires models that are 
both predictive (can be applied to many ungauged locations) 
and meaningful (allow a comparison between streamflow 
characteristics and basin attributes). The extent to which con-
stituent models serve both purposes depends on the structure 
of the models and the choice of independent variables, balanc-
ing parsimony and bias in the coefficients (Whittingham et al., 
2006). To achieve a single coherent model of flow regime, the 
structure of the 19 constituent models was constrained in two 
important ways. First, all models were forced to share a com-
mon and limited pool of independent variables. Second, model 
inputs were standardized to allow direct comparison and sum-
mary of coefficients across models. To avoid overfitting, the 
independent variables considered for the final model included 
only those terms that were significant across multiple models. 
Given the large number of independent variable observations 
relative to the number of dependent variables (average >20 : 1) 
and error-degrees of freedom (219–223), no subsequent model 
validation was completed.

Dependent Variables

Daily mean streamflow data for stream gauges in the 
Tennessee and Cumberland River watersheds were down-
loaded from the USGS’s National Water Information System 
(NWIS) database through NWISWeb (http://waterdata.usgs.
gov/nwis/sw) and assembled into a database compatible for 
use with the hydrologic integrity tool (HIT) (Henriksen et al., 
2006). All sites used in the analysis had a stream gauge with 
at least 10 years of daily mean streamflow data and had been 
screened for regulatory controls, such as hydroelectric dams 
(Law et al., 2009; Falcone et al., 2010). Sites with upstream 
control structures (such as hydroelectric and flood control) in 
the watershed were removed from the dataset due to the large 
hydrologic alteration imposed by such activities. Sites consid-
ered in the analysis do represent a range of land use condi-
tions, including those that are indicative of human alteration. 
The regression models presented here are intended to predict 
current conditions on free flowing rivers and are for use in 
examining the relation of hydrologic alteration and fish com-
munity structure resulting from different landscape conditions, 
including conditions of increased urbanization. HIT was used 
to calculate streamflow characteristics presented in the study 
by Knight et al. (2008; table 1), which were used as depen-
dent variables in this analysis. These characteristics represent 
aspects of the streamflow record presumed to partly determine 
fish community structure. In addition to the 17 characteristics 
presented in the study by Knight et al. (2008), the 15th per-
centile of streamflow (exceeded 85% of the time, e-85) and the 
median September daily streamflow were calculated for use as 
dependent variables. Median September daily streamflow was 
determined as the median of all daily streamflow values in the 
month of September available for a site. The e-85 and median 
September daily streamflow are highly correlated in the 
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streamflow dataset, with almost perfect one-to-one agreement. 
The e-85 and median September daily streamflow represent 
flow levels in the annual hydrograph that are critical to aquatic 
biota (Annear et al., 2004) and commonly referred to in regu-
lations or policy statements related to ecological flow require-
ments (Tennessee Wildlife Resources Agency, 2010). The 
final dependent-variable dataset consisted of 19 streamflow 

characteristics (Table I) for each of 231 sites in the Tennes-
see and Cumberland River basins. All dependent data were 
standardized to a mean of zero and a standard deviation of one 
prior to analysis. Dependent data were grouped according to 
the aspect of the flow regime they describe: magnitude, ratio, 
frequency, variability, and date (M, R, F, V, and D, respec-
tively; Table I).

MODELLING ECOLOGICAL FLOW REGIME

Table I. Definitions of hydrologic metrics predicted using regression analysis.
Hydrologic metric Definition (units)

Magnitude MA41—mean annual runoff Compute the annual mean daily streamow and divide by the
drainage area [cubic feet per second (cfs) per square mile
(cfsm)]

AMH10—maximum October
streamflow

Maximum October streamow across the period of record
divided by watershed area (cfsm)

e-85—streamflow value exceeded
85% of time

85% exceedance of daily mean streamflow for the period of
record normalized by the watershed area (cfsm)

Sept med—median September
daily streamflow

Calculate the median of daily mean streamflow values for the
period of record that occurred in the month of September
normalized by watershed area (cfsm)

LRA7—rate of streamflow
recession

Log transform of the median change in log of flow
flow

(flow

for days in
which the change is negative across the entire record

units per day)

Ratio LDH13—average 30-day
maximum

Log transform of the average over the period of record of the
annual maximum of 30-day moving average flows divided by
the median for the entire record (dimensionless)

ML20—base flow Divide the daily flow record into 5-day blocks. Assign the
minimum flow for the block as a base flow for that block if
90% of that minimum flow is less than the minimum flows for
the blocks on either side. Otherwise, set it to zero. Fill in the
zero values using linear interpolation. Compute the total flow
for the entire record and the total base flow for the entire
record. ML20 is the ratio of total flow to total base flow
(dimensionless)

TA1—constancy Measures the stability of flow regimes by dividing daily ows
into predetermined flow classes (dimensionless)

RA5—number of day rises Compute the number of days in which the flow is greater than
the previous day divided by the total number of days in the
flow record (dimensionless)

Frequency FH6—frequency of moderate
flooding (three times median

annual flow)

Average number of high-flow events per year that are equal to or
greater than three times the median annual flow for the period
of record. (number per year)

LFH7—frequency of moderate
flooding (seven times median

annual flow)

Log transform of the average number of high-flow events per
year that are equal to or greater than seven times the median
annual flow for the period of record (number per year)

Variability MA26—variability of March
streamflow

Compute the standard deviation for March stream flow and
divide by the mean streamflow for March (%)

LML18—variability in base flow Log transform of the standa rddeviation of the ratios of 7-day
moving average flows to mean annual flows for each year
multiplied by 100 (%)

LDL6—variability of annual
minimum daily average
streamflow

Log transform of the standard deviation for the minimum daily
average streamflow. Multiply by 100 and divide by the mean
streamflow for the period (%)

LDH16—variability in high-pulse
duration

Log transform of the standard deviation for the yearly average
high-flow pulse durations (daily flow greater than the 75th
percentile) (%)

FL2—variability in low-pulse
count

Coef cient of variation for the number of annual occurrences of
daily flows less than the 25th percentile (dimensionless)

Date TL1—annual minimum flow Julian date of annual minimum flow occurrence (Julian day)
TH1—annual maximum flow Julian date of annual maximum flow occurrence (Julian day)
RA8—ow direction reversals Average number of days per year when flow changes from rising

to falling (or from falling to rising) (number per year)

Table adapted and modified from Knight et al., (2008).

to the aspect of the flow regime they describe: magnitude,
ratio, frequency, variability, and date (M, R, F, V, and
D, respectively; Table I).

Independent variables

Selection of independent variables was driven by the
spatially and temporally varied nature of the streamflow
characteristics being predicted. Initial basin
characteristics considered for use in the development of

predictive equations were compiled using two resources.
Prior regression analyses by Law and Tasker (2003) and
Law et al. (2009) provided several basin characteristics
for sites in the Tennessee and Cumberland River water-
sheds including drainage area, main-channel slope, mean
basin elevation, soil factor, and geologic factor. Drainage
area was used to normalize magnitude variables and was
not considered as an independent variable. Additional
characteristics were derived using geographic information

Published in 2011 by John Wiley & Sons, Ltd. Ecohydrol. (2011)
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Independent Variables

Selection of independent variables was driven by the spa-
tially and temporally varied nature of the streamflow charac-
teristics being predicted. Initial basin characteristics consid-
ered for use in the development of predictive equations were 
compiled using two resources. Prior regression analyses by 
Law and Tasker (2003) and Law et al. (2009) provided several 
basin characteristics for sites in the Tennessee and Cumber-
land River watersheds including drainage area, main-channel 
slope, mean basin elevation, soil factor, and geologic factor. 
Drainage area was used to normalize magnitude variables and 
was not considered as an independent variable. Additional 
characteristics were derived using geographic information 
system (GIS) basin-weighting techniques based on the follow-
ing geospatial data layers: climate (Daly et al., 2008), 2001 
National Land Cover (Homer et al., 2004), flow processes 
(Wolock, 2003a,b), soil indices (Wolock, 1997; Greene and 
Wolfe, 1998), climate data (Daly et al., 2008), and depth to 
bedrock (Wolock, 1997). Continuous, digitally gridded climate 
data were downloaded from Parameter-elevation Regressions 
on Independent Slopes Model (Daly et al., 2008) and represent 
maximum, minimum, and average temperature and average 
precipitation for annual and monthly time periods based on the 
1971–2000 means. A dataset of more than 30 potential inde-
pendent variables that represented functional/flow governing 
processes was compiled from previous work (Law and Tasker, 
2003; Law et al., 2009) and GIS analysis. All independent data 
were standardized to a mean of zero and a standard deviation 
of one prior to analysis.

Variable Screening and Reduction

A combination of bivariate plots, parametric correla-
tion analysis, and principal component analysis were used to 
identify independent variables that were most meaningful for 
prediction, were least redundant, and minimized overspecifi-
cation. Visual patterns of bivariate association were used to 
identify and remove highly correlated variables. Spearman 
rank correlation values (ρ), using the dependent and inde-
pendent dataset, greater than or equal to 0.6 were used as a 
second screening criterion to remove or combine independent 
variables and identify a subset of variables useful in predict-
ing streamflow characteristics with minimal covariance. This 
subset of standardized independent variables was then checked 
for within-group correlation. A screening criterion of  greater 
than or equal to 0.8 within independent variables was used to 
remove highly correlated independent variables. In general, 
the variables that were most readily available and contained 
the most predictive information were kept. Principal compo-
nents analysis yielded similar results for between and within-
group analysis. 

Further variable reduction was accomplished by remov-
ing one variable from groups of variables that sum to a 
constant. Such groups produce a singularity in the solution 

matrix, confounding determination of a unique ‘best’ solution 
(Marcoulides and Hershberger, 1997). We reduced this effect 
by removing the most highly correlated variable from the 
affected variable group. For example, we removed ‘percent 
developed’ from consideration because the sum of all land use 
percentages always equals 100. Elimination of overspecifica-
tion avoids singularity while preserving the original informa-
tion in the model.

The final set of 16 independent variables represent physi-
cal determinants of how much water is available to the system, 
how that water is stored, delivered to streams, and subse-
quently transported. Thirteen of these variables can be grouped 
into four functional categories: climate, land use, physical 
properties, and regional variables. Some of these categories, 
such as the region from which a stream is flowing or the 
physical properties of soil thickness, may be relatively fixed 
and independent of human alteration. Other categories, such as 
climate and land use, may be subject to considerable change. 
The relative contributions of these categories, reflected by 
their importance in the predictive equations, may indicate their 
susceptibility to alteration through environmental change.

Interactions among independent variables were evalu-
ated by multiplying terms. Initial exploration using correla-
tion analysis as well as preliminary model runs indicated that 
significant interactions were limited to combinations of ‘mean 
monthly precipitation’ with three other variables—‘soil factor, 
rock depth, and geologic factor’. The products of these terms 
are suggestive of the volume of water held in the regolith and 
underlying aquifers available for baseflow. Resulting interac-
tion terms were included in the independent variable dataset 
(Table II).

Statistical Methods

Multivariate regression was used to develop statistical 
models relating basin properties to streamflow characteristics 
throughout the study area. Variables were removed from the 
model when individual statistical significance (p value) was 
0.2 or greater. The stepbackward (stepwise backward elimina-
tion) technique was chosen to minimize the number of terms 
in a model without overly biasing the remaining terms. Using 
a p value of 0.2 provided a similar result to single-step elimi-
nation of all nonsignificant terms (Whittingham et al., 2006). 
Model output was derived using standardized (mean of 0 and 
a standard deviation of 1) basin properties (independents) and 
streamflow characteristics (dependents). Models are in the 
basic form of a linear multivariate Equation (1).

	 Y X X Xn n= + + +b b b0 0 1 1  	 (1)�

where Y is the dependent variable of interest, and βi and Xi are 
model coefficient and value of the ith independent variable, 
respectively. Standardization consisted of subtracting the mean 
of each independent variable (Table III) from that variable’s 
value and then dividing that quantity by the variable’s standard 
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deviation (Equation (2)). Equation results can be converted 
back to nonstandardized form by multiplying each predicted 
value by the corresponding observed standard deviation and 
adding the observed mean (Table III) (Equation (3)).

	 X X X
 ′

= −( )/SD 	 (2)�

	 Y Y Y= × +
′
SD 	 (3)�

where X is the independent variable, X the standardized form 
of the independent variable, X the mean of the independent 
variable, Y the dependent variable, Y the standardized form of 
the dependent variable, Y the mean of the dependent variable, 
and SD is the standard deviation.

Regression coefficients determined from standardized 
data were used to compare the importance of independent 
variables. These are commonly referred to as beta-weights in 
which magnitudes express the relative influence (weight) of 
each independent term on model predictions (Landis, 2005). 
Newman and Browner (1991) discuss the relative usefulness 
of beta-weights at comparing associations between predictor 
variables (independents) and outcomes within and between 
populations. The absolute value of beta-weights computed for 
similarly structured constituent models of streamflow char-
acteristics were summed across multiple models to provide 
a general indication of the relative importance of watershed 
attributes on overall flow regime. Although beta-weights may 
be misinterpreted in the presence of strong covariance (Green-
land et al., 1986, 1991), the approach has value in comparing 
multiple models (Criqui, 1991) when care is taken to minimize 
covariance.MODELLING ECOLOGICAL FLOW REGIME

Table II. Definitions for independent variables used in predictive equations.

Variable Definition

Climate
Monthly mean precipitation Average annual precipitation divided by 12 (mm) (Daly et al., 2008)
Jan precipitation deviation Mean January precipitation divided by monthly precipitation mean (mm) (Daly et al.,

2008)
Daily temperature range Mean maximum daily temperature minus mean minimum daily temperature (°C) (Daly

et al., 2008)
August temperature deviation Mean August maximum temperature minus mean annual temperature divided by mean

annual temperature (°C) (Daly et al., 2008)
Land use
Forest Percent forest cover—the total percentage of land cover in a watershed that is considered

to be forested (%) (Homer et al., 2004)
Agriculture Percent agricultural cover—the total percentage of land cover in a watershed that is

considered to be agricultural (%) (Homer et al., 2004)

Physical
Horton Index of Hortonian overland (infiltration excess) (dimensionless) (Wolock, 2003a, b)
Mean elevation Mean basin elevation derived from 1/3 arc-second digital elevation model (feet) (Gesch

et al., 2002; Gesch, 2007)
Soil factor Percentage of area underlain by soil with a permeability of at least 5 cm Ðh�1(percentage)

(Greene and Wolfe, 1998)
Rock depth Average depth of soil above bedrock (feet) (Wolock, 1997)

Regional
Geologic factor Measure of the number of days that pass as discharge recedes one complete log cycle of

streamflow (days) (Bingham, 1986)
Blue Ridge Percent of the watershed that lies within the Blue Ridge level 3 ecoregion (calculated from

Omernik, 1987)
Interior Plateau Percent of the watershed that lies within the Interior Plateau level 3 ecoregion (calculated

from Omernik, 1987)

Interaction Terms
Soil factor Soil factor multiplied by monthly mean precipitation
Rock depth Rock depth multiplied by monthly mean precipitation
Geologic factor Geologic factor multiplied by monthly mean precipitation

All variables represent average values for a basin with the exception of Blue Ridge, Interior Plateau, forest, and agriculture, which are expressed as
the percent of total watershed area.
[Correction added after online publication 22 December 2011: the definition of 'August temperature deviation' has been changed] 

Regression coefficients determined from standard-
ized data were used to compare the importance of
independent variables. These are commonly referred to
as beta-weights in which magnitudes express the relative
influence (weight) of each independent term on model
predictions (Landis, 2005). Newman and Browner (1991)
discuss the relative usefulness of beta-weights at com-
paring associations between predictor variables (indepen-
dents) and outcomes within and between populations. The
absolute value of beta-weights computed for similarly
structured constituent models of streamflow characteris-
tics were summed across multiple models to provide a
general indication of the relative importance of watershed
attributes on overall flow regime. Although beta-weights
may be misinterpreted in the presence of strong covari-
ance (Greenland et al., 1986, 1991), the approach has
value in comparing multiple models (Criqui, 1991) when
care is taken to minimize covariance.

RESULTS

Model coefficients

Final models retained as few as 6 and as many as 12
independent variables significant in predicting streamflow

characteristics. ‘Daily temperature range’ was the most
common, appearing in 17 equations, while the inter-
action term ‘soil factor—monthly mean precipitation’
was least often used (three times) (Table III). ‘Geo-
logic factor’ had the greatest total weight (a sum of
the absolute values of 4Ð9398 across all equations),
may have the greatest influence overall, and was sig-
nificant in 14 models. This variable was closely fol-
lowed by ‘mean elevation’, with an aggregate beta
weight of 4Ð4012 across 11 models. The interaction
term ‘soil factor—monthly mean precipitation’—was
the least powerful term (aggregate weight 0Ð7415).
Streamflow characteristics describing magnitudes (M) are
overwhelmingly influenced by variations in ‘monthly
mean precipitation’ (2Ð057), ‘geologic factor’ (1Ð190),
and ‘percent Interior Plateau’ (0Ð9382). Streamflow
characteristics describing frequencies (F) are strongly
influenced by ‘mean elevation’ (0Ð8520), ‘percent of agri-
cultural land use’ (0Ð6836), ‘percent Interior Plateau’
(0Ð4453), and geologic factor (0Ð4377). Streamflow
characteristics for ratio (R) and variability (V) measures
appear to be most strongly related to ‘geologic fac-
tor’ (1Ð046 and 2Ð129, respectively). ‘Percent Blue
Ridge’ (0Ð7809) and ‘mean elevation’ (0Ð6936) represent
a second tier of influence for ratio characteristics,

Published in 2011 by John Wiley & Sons, Ltd. Ecohydrol. (2011)
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Results
Model Coefficients

Final models retained as few as 6 and as many as 12 
independent variables significant in predicting streamflow 
characteristics. ‘Daily temperature range’ was the most com-
mon, appearing in 17 equations, while the interaction term 
‘soil factor—monthly mean precipitation’ was least often used 
(three times) (Table III). ‘Geologic factor’ had the greatest 
total weight (a sum of the absolute values of 4.9398 across all 
equations), may have the greatest influence overall, and was 
significant in 14 models. This variable was closely followed 
by ‘mean elevation’, with an aggregate beta weight of 4.4012 
across 11 models. The interaction term ‘soil factor—monthly 
mean precipitation’—was the least powerful term (aggregate 
weight 0.7415). Streamflow characteristics describing mag-
nitudes (M) are overwhelmingly influenced by variations in 
‘monthly mean precipitation’ (2.057), ‘geologic factor’ (1.190), 
and ‘percent Interior Plateau’ (0.9382). Streamflow charac-
teristics describing frequencies (F) are strongly influenced by 
‘mean elevation’ (0.8520), ‘percent of agricultural land use’ 
(0.6836), ‘percent Interior Plateau’ (0.4453), and geologic 
factor (0.4377). Streamflow characteristics for ratio (R) and 
variability (V) measures appear to be most strongly related 
to ‘geologic factor’ (1.046 and 2.129, respectively). ‘Percent 
Blue Ridge’ (0.7809) and ‘mean elevation’ (0.6936) represent 
a second tier of influence for ratio characteristics, while ‘mean 
elevation’ (1.2863) and ‘percent Interior Plateau’ (1.1847) 
represent second tier influence for variability characteristics. 
‘Mean elevation’ (0.9296), ‘percent Blue Ridge’ (0.5688), 
and ‘August temperature deviation’ (0.5575) provide the most 
explanatory power for streamflow characteristics of the date 
(D) group. The frequency (F) and variability (V) groups have 
higher total beta weights per number of predictive models 
within the respective groups (2.59 and 2.22, respectively).

While all variable categories were significant in all 
predictive equations, the regional variables appear to have the 
greatest importance based on aggregate beta weights summed 
across all equations, followed by climate, physical, and finally 
land use variables. Regional variables were used in 17 of 
19 equations. ‘Geologic factor’ had the highest incidence of 
statistical significance (12 equations). Six of the seven most 
predictive models (LDH13, E85, ML20, LFH7, Sep_med, 
and MA26) used all three regional variables. Climate variable 
beta weights were among the highest, reflecting the intimate 
relation between climatic and hydrologic variability. ‘Daily 
temperature range’ was used in all but two models (LDL6 
and RA8). All climate variables were used in two magni-
tude equations (e85 and Sep_med). Variables in the physical 
category were used in all 19 equations. ‘Mean elevation’ and 
‘Horton’ (Hortonian overland flow coefficient, Table II) were 
the most commonly used physical variables, being used in 12 
equations, while mean elevation was significant in 5 equa-
tions. ‘Soil factor’ and ‘rock depth’ were significant in four 
and three equations respectively, appearing in nine and ten 
equations, respectively (Table III). Land use played a major 
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role in 15 of 19 equations and statistically significant in 7 
equations. In five equations where both ‘percent agriculture’ 
and ‘percent forest’ were present, beta-weights indicated that 
‘percent agriculture’ was between 1.5 and 2 times as important 
compared with ‘percent forest’ (based on beta-weights) were 
of about equal importance. Beta-weights also suggest that land 
use variables are most important in determining frequency of 
moderate flooding (FH6) and variability in low pulse count 
(FL2). Maximum October runoff and frequency of moderate 
flooding were inversely related to the ‘percent forest’ and ‘per-
cent agriculture’, while constancy and variability in low pulse 
count were positively correlated to the ‘percent forest’ and 
‘percent agriculture’. While land use variables were influential 
in 15 predictive equations, they were ranked fourth of the four 
independent variable groups when considering overall average 
aggregate beta-weight per time used in an equation.

Fit Statistics

High-aggregate beta-weight across all terms in a given 
model generally corresponds to higher r2 values for predic-
tive equations and generally increases with increasing number 
of model parameters (Table III; Figure 2). This was also true 
when considering the dependent-variable groups (magnitude, 
frequency, ratio, variability, and date). The average number 
of model parameters and r2 values for the magnitude (9.8, 
0.8016) and frequency (12, 0.7230) groups were higher than 
for the ratio (9.5, 0.6185), variability (8.8, 0.4932), and date 
(7, 0.2713) groups. The five highest r2 values (MA41, LDH13, 
E85, ML20, and LFH7) varied by less than 0.065 (Table III). 
The r2 values decline more steeply below the top five, down to 
0.27, 0.24, and 0.15 for the lowest three models. Poor model 
fit suggests that significant determinants of a particular stream-
flow characteristic were not adequately represented in the 
independent variable set. The top five models used an average 
of 10.6 independent variables (66% of the available inde-
pendent variables) compared with the remaining 14 models, 
which used an average of 8.78 independent variables (55% of 
available independent variables) (Table III).

Streamflow characteristics in the magnitude and fre-
quency groups have lower average root mean square error 
(RMSE) values (0.4356 and 0.5240, respectively) compared 
with ratio (0.6004), variability (0.7234), and date groups 
(0.8695) (Table III). RMSE values indicate the share of the 
dependent variable standard error that remains unexplained 
in the model. RMSE varied from a high value of 0.9415 for 
the prediction of the number of flow reversals (RA8) to a low 
value of 0.3058 for the prediction of the mean annual run-
off (MA41) (Table III). The RMSE for the number of flow 
reversals (RA8) indicates that only 5.85% (1–0.9415) of the 
original standard error was removed by the model. The RMSE 
for mean annual runoff indicates that 69% (1–0.3058) of the 
original standard error was removed by the model.

MODELLING ECOLOGICAL FLOW REGIME
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while ‘mean elevation’ (1Ð2863) and ‘percent Interior
Plateau’ (1Ð1847) represent second tier influence for
variability characteristics. ‘Mean elevation’ (0Ð9296),
‘percent Blue Ridge’ (0Ð5688), and ‘August temperature
deviation’ (0Ð5575) provide the most explanatory power
for streamflow characteristics of the date (D) group. The
frequency (F) and variability (V) groups have higher total
beta weights per number of predictive models within the
respective groups (2Ð59 and 2Ð22, respectively).

While all variable categories were significant in all
predictive equations, the regional variables appear to
have the greatest importance based on aggregate beta
weights summed across all equations, followed by cli-
mate, physical, and finally land use variables. Regional
variables were used in 17 of 19 equations. ‘Geologic fac-
tor’ had the highest incidence of statistical significance
(12 equations). Six of the seven most predictive models
(LDH13, E85, ML20, LFH7, Sep med, and MA26) used
all three regional variables. Climate variable beta weights
were among the highest, reflecting the intimate relation
between climatic and hydrologic variability. ‘Daily tem-
perature range’ was used in all but two models (LDL6
and RA8). All climate variables were used in two mag-
nitude equations (e85 and Sep med). Variables in the
physical category were used in all 19 equations. ‘Mean
elevation’ and ‘Horton’ (Hortonian overland flow coeffi-
cient, Table II) were the most commonly used physical
variables, being used in 12 equations, while mean ele-
vation was significant in 5 equations. ‘Soil factor’ and
‘rock depth’ were significant in four and three equations
respectively, appearing in nine and ten equations, respec-
tively (Table III). Land use played a major role in 15 of
19 equations and statistically significant in 7 equations.
In five equations where both ‘percent agriculture’ and
‘percent forest’ were present, beta-weights indicated that
‘percent agriculture’ was between 1Ð5 and 2 times as
important compared with ‘percent forest’ (based on beta-
weights) were of about equal importance. Beta-weights
also suggest that land use variables are most important in
determining frequency of moderate flooding (FH6) and
variability in low pulse count (FL2). Maximum October
runoff and frequency of moderate flooding were inversely
related to the ‘percent forest’ and ‘percent agriculture’,
while constancy and variability in low pulse count were
positively correlated to the ‘percent forest’ and ‘percent
agriculture’. While land use variables were influential in
15 predictive equations, they were ranked fourth of the
four independent variable groups when considering over-
all average aggregate beta-weight per time used in an
equation.

Fit statistics

High-aggregate beta-weight across all terms in a given
model generally corresponds to higher r2 values for pre-
dictive equations and generally increases with increas-
ing number of model parameters (Table III; Figure 2).
This was also true when considering the dependent-
variable groups (magnitude, frequency, ratio, variability,

Published in 2011 by John Wiley & Sons, Ltd. Ecohydrol. (2011)
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Implications for Defining Ecological 
Flow Requirements and Limits of 
Hydrologic Alteration

Ecological flow studies have as their object, understand-
ing and identifying the limits of hydrologic alteration based on 
ecological response to a quantifiable hydrologic change from 
some reference condition (regime) that is unique to streams in 
a given region (Poff et al., 1997, 2010). Implicit in this effort 
is a general conceptual model in which changes in basin con-
ditions alter hydrologic response relative to some hydrologic 
reference condition, followed by consequential ecological 
change (Arthington et al., 2006). The following discussion is 
a preliminary examination of the broad relation between basin 
properties and streamflow and its implications for the study of 
ecological flow requirements. We begin that examination with 
a few key questions:
1.	 Which streamflow characteristics, at what levels of preci-

sion and accuracy, are appropriate to define a reference 
flow regime?

2.	 How large a departure from a specific reference condition 
can aquatic communities tolerate?

3.	 Can regional patterns in hydrologic alteration be associ-
ated with specific ecological community responses?

4.	 Which hydrologic characteristics are most useful in 
comparing sites and regions to reference conditions to 
quantify hydrologic alteration?

5.	 Which types of conceptual and mathematical models best 
address ecological effects of hydrologic alteration?
To begin addressing these questions, we consider the 

distributions of observed and predicted values for 19 modelled 
streamflow characteristics in the 20 least disturbed (>91% 
forest cover) basins in the Blue Ridge. The basins represent 
the least disturbed landscape condition in the Tennessee–
Cumberland system, which is recognized for its globally sig-
nificant aquatic biodiversity (Abell et al., 2000). Furthermore, 
most of these basins lie wholly or substantially on protected 
public lands. In the absence of detailed ecological data, these 
streams can be presumed to provide reference quality habitat 
and hydrologic conditions. The middle 50% (interquartile 
range) of values for these streamflow characteristics captures 
the space in which a reference flow regime for the Blue Ridge 
would likely reside. That baseline is graphically represented 
by ordering (arbitrarily) observed Blue Ridge median depar-
tures from the overall mean (mean of the standardized data, in 
this case zero) highest to lowest. Observed median departures 
range from nearly 1.9 (MA41) to about –1.2 (LDH13) stan-
dard deviations (Figure 3(a)).

Rather than considering any single stream as defining a 
unique hydrologic reference condition, it may be more useful 
to seek a general set of hydrologic conditions that delineate a 

R. R. KNIGHT, W. S. GAIN AND W. J. WOLFE

Figure 2. Comparison of standardized values of observed and predicted
values across range of model fits for (a) mean annual runoff (MA41) (nine
variables), (b) frequency of moderate flooding (FH6) (11 variables), and

(c) timing of annual maximum streamflow (TH1) (6 variables).

and date). The average number of model parameters and
r2 values for the magnitude (9Ð8, 0Ð8016) and frequency
(12, 0Ð7230) groups were higher than for the ratio (9Ð5,
0Ð6185), variability (8Ð8, 0Ð4932), and date (7, 0Ð2713)
groups. The five highest r2 values (MA41, LDH13, E85,

ML20, and LFH7) varied by less than 0Ð065 (Table III).
The r2 values decline more steeply below the top five,
down to 0Ð27, 0Ð24, and 0Ð15 for the lowest three models.
Poor model fit suggests that significant determinants of a
particular streamflow characteristic were not adequately
represented in the independent variable set. The top five
models used an average of 10Ð6 independent variables
(66% of the available independent variables) compared
with the remaining 14 models, which used an average of
8Ð78 independent variables (55% of available independent
variables) (Table III).

Streamflow characteristics in the magnitude and fre-
quency groups have lower average root mean square
error (RMSE) values (0Ð4356 and 0Ð5240, respectively)
compared with ratio (0Ð6004), variability (0Ð7234), and
date groups (0Ð8695) (Table III). RMSE values indicate
the share of the dependent variable standard error that
remains unexplained in the model. RMSE varied from a
high value of 0Ð9415 for the prediction of the number of
flow reversals (RA8) to a low value of 0Ð3058 for the
prediction of the mean annual runoff (MA41) (Table III).
The RMSE for the number of flow reversals (RA8) indi-
cates that only 5Ð85% (1–0Ð9415) of the original standard
error was removed by the model. The RMSE for mean
annual runoff indicates that 69% (1–0Ð3058) of the orig-
inal standard error was removed by the model.

IMPLICATIONS FOR DEFINING ECOLOGICAL
FLOW REQUIREMENTS AND LIMITS OF

HYDROLOGIC ALTERATION

Ecological flow studies have as their object, understand-
ing and identifying the limits of hydrologic alteration
based on ecological response to a quantifiable hydrologic
change from some reference condition (regime) that is
unique to streams in a given region (Poff et al., 1997,
2010). Implicit in this effort is a general conceptual model
in which changes in basin conditions alter hydrologic
response relative to some hydrologic reference condition,
followed by consequential ecological change (Arthington
et al., 2006). The following discussion is a preliminary
examination of the broad relation between basin proper-
ties and streamflow and its implications for the study of
ecological flow requirements. We begin that examination
with a few key questions:

1. Which streamflow characteristics, at what levels of
precision and accuracy, are appropriate to define a
reference flow regime?

2. How large a departure from a specific reference
condition can aquatic communities tolerate?

3. Can regional patterns in hydrologic alteration be asso-
ciated with specific ecological community responses?

4. Which hydrologic characteristics are most useful in
comparing sites and regions to reference conditions to
quantify hydrologic alteration?

5. Which types of conceptual and mathematical models
best address ecological effects of hydrologic alteration?

Published in 2011 by John Wiley & Sons, Ltd. Ecohydrol. (2011)

Figure 2.  Comparison of standardized values of observed and 
predicted values across range of model fits for (a) mean annual 
runoff (MA41) (nine variables), (b) frequency of moderate 
flooding (FH6) (11 variables), and (c) timing of annual maximum 
streamflow (TH1) (6 variables).
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reference ‘hydrologic profile’ for the Blue Ridge. Published 
discussion of hydrologic reference conditions related to 
stream ecology appears to consider the hydrologic variabil-
ity of single streams, often referred to as ‘natural hydrologic 
regimes’ (Jacobson and Galat, 2008). However, each of the 
streams represented in Figure 3 occupies its own flow regime 
with inherent variability and unique descriptive hydrologic 
statistics; any of these individual flow regimes might plausibly 
be regarded as a ‘reference’, with little basis for preferring one 
over another. Collectively, the 20 sites plotted in Figure 3(a) 

(observed values) define a distinctive pattern characterized by 
(1) the signs and magnitudes of the median departure from the 
overall mean, (2) the ordering of such departures from largest 
to smallest, and (3) the overall and interquartile ranges of each 
characteristic. Such patterns may provide a reasonably robust 
and stable basis for inferring hydrologic reference conditions 
(sensu Arthington et al., 2006).

Working from the assumption that 20 watersheds in 
the Blue Ridge with more than 91% forest cover represent 
an undisturbed and presumably tolerable set of hydrologic 

MODELLING ECOLOGICAL FLOW REGIME

Figure 3. Precision and accuracy of predicting the Blue Ridge hydrologic response profile were assessed by comparing the interquartile range of the
predicted and observed streamflow characteristics for minimally altered watesheds in Blue Ridge physiographic province (a) and for selected USGS

streamgaging stations (b) (http://waterdata.usgs.gov/nwis/sw).

To begin addressing these questions, we consider the
distributions of observed and predicted values for 19
modelled streamflow characteristics in the 20 least dis-
turbed (>91% forest cover) basins in the Blue Ridge.
The basins represent the least disturbed landscape con-
dition in the Tennessee–Cumberland system, which is
recognized for its globally significant aquatic biodiversity
(Abell et al., 2000). Furthermore, most of these basins
lie wholly or substantially on protected public lands. In
the absence of detailed ecological data, these streams
can be presumed to provide reference quality habitat
and hydrologic conditions. The middle 50% (interquar-
tile range) of values for these streamflow characteristics
captures the space in which a reference flow regime
for the Blue Ridge would likely reside. That baseline is

graphically represented by ordering (arbitrarily) observed
Blue Ridge median departures from the overall mean
(mean of the standardized data, in this case zero) highest
to lowest. Observed median departures range from nearly
1Ð9 (MA41) to about �1Ð2 (LDH13) standard deviations
(Figure 3(a)).

Rather than considering any single stream as defining
a unique hydrologic reference condition, it may be more
useful to seek a general set of hydrologic conditions
that delineate a reference ‘hydrologic profile’ for the
Blue Ridge. Published discussion of hydrologic reference
conditions related to stream ecology appears to consider
the hydrologic variability of single streams, often referred
to as ‘natural hydrologic regimes’ (Jacobson and Galat,
2008). However, each of the streams represented in
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Figure 3.  Precision and accuracy of predicting the Blue Ridge hydrologic response profile were assessed 
by comparing the interquartile range of the predicted and observed streamflow characteristics for minimally 
altered watesheds in Blue Ridge physiographic province (a) and for selected USGS streamgaging stations  
(b) (http://waterdata.usgs.gov/nwis/sw).
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conditions, the range of ecological tolerability might be 
inferred from the range of observed variability of ecologically 
relevant streamflow characteristics. The observed interquartile 
ranges for the 19 streamflow characteristics range from about 
0.5–2 standard deviations on the standardized scale (Fig-
ure 3(a)), but the range of tolerability for organisms may be 
greater. The observed interquartile ranges define an empirical 
hydrologic profile, which approximates the central tendency of 
the reference hydrologic profile.

A plot of actual values for the 19 streamflow charac-
teristics (Figure 3(b)) shows at least three distinct patterns 
of departure from the overall mean. The Cataloochee River 
and Hazel Creek plot close to the central tendency of the 
left-to-right descent of the 19 medians, while both Brier 
Creek and the Nantahala River (both flow controlled) show 
substantial departures (Figure 3(b)). The pattern of departure 
shown by Brier Creek is shared with varying, and generally 
smaller, magnitudes by several of the 20 least disturbed sites 
in the Blue Ridge. The pattern shown by the Nantahala River 
provides evidence of the usefulness that hydrologic response 
profiles in determining departures from a reference conditions. 
Although the Nantahala River is a nearly pristine watershed, 
flow from 60% of the basin is controlled by a reservoir.

A comparable plot of values for Mud Creek, the least for-
ested (43%) watershed analysed in the Blue Ridge, lies close, 
with a few exceptions, to the central tendency traced by the 
plots for the Cataloochee River and Hazel Creek (Figure 3(b)). 
This result is somewhat unexpected given that land use was an 
important term in 15 of 19 equations. However, this also com-
pliments the earlier finding that land use was the fourth of four 
independent variable groups in regard to average aggregate 
betaweight across all models. Nonetheless, this finding sug-
gests that forest cover, while useful in predicting streamflow 
characteristics, does not fundamentally change the region of 
hydrologic response, at least across the range of forest cover 
(40–100%) considered for the Blue Ridge in this study. Sig-
nificantly lower forest cover in the Mud Creek watershed fails 
to produce hydrologic departures approaching those displayed 
by the nearly pristine, yet controlled, Nantahala River and 
practically pristine Brier Creek (Figure 3(b)).

Regions of hydrologic response appear to be unique 
for each principal geographic region and do not appear to 
be related to differences in forest cover. Median and quartile 
departures from the overall mean for the same 19 stream-
flow characteristics in Ridge and Valley and Interior Plateau 
produce distinct regional patterns that contrast with that of the 
Blue Ridge when plotted in the same left-to-right order (Fig-
ure 4). Observed and predicted values are represented for the 

20 least disturbed sites in the Ridge and Valley (>61% forest 
cover) and the Interior Plateau (>59%) (Figure 4). Compared 
with the Blue Ridge, both the Ridge and Valley and Interior 
Plateau show a clear reversal of slope in the region of hydro-
logic response. These two regions show lower overall flow 
magnitudes (left side of plot) and higher variability charac-
teristics (right side of plot) than that seen in the Blue Ridge. 
There are notable differences between the Interior Plateau 
and Ridge and Valley, including lower interquartile ranges for 
most characteristics in the Ridge and Valley and lower median 
departures for extremes (AMH10 and LDH16) (Figure 4). The 
intermediate hydrologic character of the Ridge and Valley is 
consistent with previous analyses (Knight et al., 2008).

Streamflow characteristics that are furthest from the mean 
(standardized units = 0) have smallest interquartile ranges 
and can be predicted with the greatest accuracy, and preci-
sion may be the most useful for comparing sites, regions, and 
reference conditions. These are characteristics on the extreme 
left and right of Figures 3 and 4. In general, these charac-
teristics also have the highest prediction coefficients (r2 in 
Table III). Overall, the models perform well, predicting the 
central regional hydrologic profile across the range of charac-
teristics. However, review of predicted characteristics for the 
Nantahala River and Brier Creek shows that they fall within 
the central regional hydrologic profile and do not display the 
strong departures seen with the observed characteristics. This 
provokes two observations. The first is that some stations 
display considerable hydrologic variation that is unaccounted 
for within the predictive models. The second is that the predic-
tive models may reasonably be assumed to capture an intrin-
sic hydrologic behaviour that is broadly descriptive of the 
geographic region.

We have noted reservations about the feasibility of devel-
oping precise and accurate analytical watershed models across 
broad regions (Hogue et al., 2004; Duan et al., 2006; Schaake 
et al., 2006). Our analysis raises the question of whether 
such models, even if feasible, are well suited to the task of 
discriminating between ecologically tolerable and intolerable 
hydrologic conditions. The wide range of variability within the 
hydrologic response region defined by least disturbed basins 
in the Blue Ridge suggests that incremental hydrologic change 
need not have a discernible ecological effect. Moreover, the 
location of a relatively disturbed stream, such as Mud Creek, 
near the centre of the approximated regional hydrologic profile 
for the Blue Ridge suggests that regional hydrologic profiles 
may be able to absorb considerable land cover alteration with-
out significant, or even discernible, hydrologic change.
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Figure 4. Interquartile ranges for observed and predicted values of 19 sttreamflow characteristics for 20 least disturbed watersheds in the Ridge and
Valley (a) and Interior Plateau (b) physiographic regions compared with the observed central hydrologic response profile for the Blue Ridge.

that regional hydrologic profiles may be able to absorb
considerable land cover alteration without significant, or
even discernible, hydrologic change.

CONCLUSIONS

This paper presents an approach to ecological stream-
flow requirements based on statistical modelling. This
approach is innately suitable to hydrologic characteri-
zation at the regional scale and illuminates the influ-
ence of independent environmental factors on hydrologic
response. Resulting analysis examines regional hydrology
in a way that integrates an array of characteristics across
multiple streams to delineate regional hydrologic profiles,
which provide an analytical framework for classifying
streams and examining the relation between ecologi-
cal integrity and streamflow characteristics. Preliminary
application of that framework in this paper suggests both
hydrologic resilience in the face of landscape change and
ecological resilience in the face of hydrologic change.
The limits of such resilience remain an open question.
Determining those limits will require an analysis of eco-
logical data at a similar spatial scale including correla-
tion with reliable estimates of streamflow characteristics.
From this, it may be possible to determine where and
under what conditions aquatic communities are limited
by flow regime.
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Conclusions
This paper presents an approach to ecological streamflow 

requirements based on statistical modelling. This approach is 
innately suitable to hydrologic characterization at the regional 
scale and illuminates the influence of independent environ-
mental factors on hydrologic response. Resulting analysis 
examines regional hydrology in a way that integrates an array 
of characteristics across multiple streams to delineate regional 
hydrologic profiles, which provide an analytical framework 
for classifying streams and examining the relation between 
ecological integrity and streamflow characteristics. Prelimi-
nary application of that framework in this paper suggests both 
hydrologic resilience in the face of landscape change and eco-
logical resilience in the face of hydrologic change. The limits 
of such resilience remain an open question. Determining those 
limits will require an analysis of ecological data at a similar 
spatial scale including correlation with reliable estimates of 
streamflow characteristics. From this, it may be possible to 
determine where and under what conditions aquatic communi-
ties are limited by flow regime.
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