
Abstract
Nineteen ecologically-relevant streamflow characteristics 

were estimated using published rainfall-runoff and regional 
regression models for six sites with observed daily streamflow 
records in Kentucky. The regional regression model produced 
median estimates closer to the observed median for all but 
two characteristics. The variability of predictions from both 
models was generally less than the observed variability. The 
variability of the predictions from the rainfall-runoff model 
was greater than that from the regional regression model for 
all but three characteristics. Eight characteristics predicted 
by the rainfall-runoff model display positive or negative 
bias across all six sites; biases are not as pronounced for the 
regional regression model. Results suggest that a rainfall-
runoff model calibrated on a single characteristic is less likely 
to perform well as a predictor of a range of other character-
istics (flow regime) when compared to a regional regression 
model calibrated individually on multiple characteristics used 
to represent the flow regime. Poor model performance may 
misrepresent hydrologic conditions, potentially distorting 
the perceived risk of ecological degradation. Without prior 
selection of streamflow characteristics, targeted calibration, 
and error quantification, the widespread application of general 
hydrologic models to ecological flow studies is problematic. 

Introduction
Streamflow is generally recognized to be a critical deter-

minant of ecological health (Poff et al., 1997; Arthington et 
al., 2006; Carlisle et al., 2011; Chinnayakanahalli et al., 2011). 
The overall distribution of streamflow comprises thousands of 

individual streamflow characteristics, including high and low 
extremes and details of timing and variability of flow condi-
tions. The suite of streamflow characteristics whose alteration 
is likely to produce an observable ecological effect constitutes 
the ecological flow regime (Arthington et al., 2006; Postel and 
Richter, 2003; Knight et al., 2011). Detailed understanding of 
how flow affects ecological conditions remains an open scien-
tific challenge, in part because observed hydrologic data are 
unavailable for many ecological sampling locations (Knight 
et al., 2008; Poff et al., 2010; Poff and Zimmerman, 2010). 
Absent observed data, hydrological models are widely cited as 
a means to predict streamflow at ecological sampling sites and 
relate estimated streamflow to ecological conditions (Arthing-
ton et al., 2006; Carlisle et al., 2010; Knight et al., 2011). 

Knight et al. (2011) identify two distinct modeling 
approaches that can be applied to ecological flow studies. The 
approach most commonly cited in ecological flow literature 
is the use of numerical rainfall-runoff models to simulate 
hydrographs, typically for daily time steps across time periods 
of one to several decades (Williamson et al., 2009; Poff et al., 
2010). Descriptive streamflow statistics (streamflow character-
istics) are then calculated from the simulated hydrographs and 
analyzed for relationships to ecological data. An alternative 
approach is to identify specific streamflow characteristics of 
interest and estimate them directly through regional regression 
methods, typically some variant of multivariable linear regres-
sion on basin characteristics (Sanborn and Bledsoe, 2006; 
Carlisle et al., 2010; Knight et al., 2011). 

 As noted by Knight et al. (2011), statistical estimation of 
streamflow characteristics has received only limited appli-
cation in ecological flow studies but has been the standard 
approach for estimating traditional hydrologic characteristics 
for decades (Riggs, 1973; Tasker, 1982; Tasker and Stedinger, 
1989; Tasker and Slade, 1994; Tasker et al., 1996; Law and 
Tasker, 2003; Law et al., 2009). The question of the relative 
accuracy and reliability of these two modeling approaches is 
of considerable interest in designing ecological flow studies, 
but has rarely been addressed directly because few basins have 
been modeled using both approaches.
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In this paper, we investigate the accuracy and reliability 
of published rainfall-runoff (Williamson et al., 2009) and 
regional regression (Knight et al., 2011) models to estimate 
19 streamflow characteristics proposed by Knight et al. 
(2011) as having presumptive ecological relevance. These 
19 streamflow characteristics describe a suite of flows that 
represent the ecological flow regime (Knight et al., 2011). 
The two regionally-calibrated models overlap geographically 
in the portion of southern Kentucky lying within the Tennes-
see and Cumberland River basins (Figure 1). However, the 
two models are calibrated to different levels of hydrologic 
specificity. The rainfall-runoff model was calibrated on the 
mean daily discharge and provides a general estimator of 
hydrologic response, whereas the regional regression model 
was calibrated for each of 19 streamflow characteristics 
specifically selected for presumed ecological relevance. Using 
both models, streamflow characteristics were predicted for six 
catchments (Table 1) and compared to observed streamflow 
characteristics calculated from 22 to 68 years of recorded 
daily streamflow. Following Beven (1989) and Jakeman and 
Hornberger (1993), we hypothesize that a rainfall-runoff 
model is unlikely to provide reliable estimates of streamflow 
characteristics other than for those on which it was calibrated 
and would therefore be of limited use in predicting ecological 
flow regime.

Hydrologic Models in Ecological 
Flow Studies

Rainfall-runoff models are appealing in ecological flow 
studies largely because of the flexibility they provide. Any 
number of streamflow characteristics can be calculated from 
a simulated streamflow time series without prior knowledge 
of their ecological relevance. Unlike traditional rainfall-runoff 
models, which were constrained to simulate streamflow at 
predetermined nodes, more sophisticated models are now able 
to simulate flows at any point along a stream reach (William-
son et al., 2009). Additionally, rainfall-runoff models allow for 
scenario analysis in which inputs and parameters are varied to 
reflect changing environmental conditions.

Weaknesses of rainfall-runoff models have been dis-
cussed at length in the hydrologic modeling literature (e.g. 
Duan et al., 2006; Kirchner, 2006; Clarke, 2008; Kavetski and 
Clark 2011).  These weaknesses include poorly constrained 
parameter estimation (Hogue et al., 2004; Duan et al., 2006; 
Schaake et al., 2006), inadequate quantification of uncertainty 
(Beven, 2006; Andreassian et al., 2007; Sivapalan, 2009), con-
ceptual errors in model structure and parameterization (Kirch-
ner, 2006), and computational errors (Kavetski and Clark, 
2011). Application of rainfall-runoff models to uncalibrated 
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sites implicitly extrapolates calibration throughout the mod-
eled area with little prospect of evaluating error or uncertainty. 
In addition, many rainfall-runoff models are calibrated on 
mean daily discharge without respect to other aspects of the 
flow regime, such as extreme low or high flow conditions. A 
few ecological flow studies begin to address some of these 
issues by explicitly acknowledging the need to bound uncer-
tainty (Acreman et al., 2009) or to incorporate model error 
in the analysis (Black et al., 2005). However, ecological flow 
methodologies generally make little effort to recognize and 
address these issues (e.g. Richter et al., 1996; Molnar et al., 
2002; Kennen et al., 2008; Poff et al., 2010).

Regional regression modeling is an alternative approach 
for predicting streamflow characteristics. Regional regres-
sion models are routinely used to predict flood magnitude 
and frequency, such as the 100-year flood, and low flow and 
flow-duration statistics, such as the mean summer stream-
flow (Riggs, 1973; Tasker, 1982; Tasker and Stedinger, 1989; 
Tasker and Slade, 1994; Tasker et al., 1996; Law and Tasker, 
2003; Law et al., 2009). Such models form the basis for 
flood insurance and water-supply planning across much of 
the world. Regional regression methods predict average and 
extreme flow conditions through interpolation and include 
well-established tests of accuracy. Also, regional regression 
techniques can be applied at any point along a stream reach. A 
chief weakness of regional regression models is their relative 
inflexibility; because the models are built for specific sets of 
streamflow characteristics, new models must be developed if 
subsequent analyses indicate that streamflow characteristics 
outside the original set are required. Few ecological flow stud-
ies have utilized regional regression approaches to relate basin 
and climate attributes to ecologically relevant streamflow 
conditions (e.g., Sanborn and Bledsoe, 2006; Carlisle et al., 
2010; Knight et al., 2011). 

Methods
Our analysis compares streamflow characteristics esti-

mated from two published models to the same streamflow 
characteristics calculated from observed data. Both models 
were applied to the same six basins (Table 1) using input data 
and model specifications unaltered from their published ver-
sions, including the period of simulation where applicable. 
Model performance was evaluated based on absolute and 
percent departures of estimated characteristics from observed.

Rainfall-Runoff Model

The rainfall-runoff model used for comparison was devel-
oped by Williamson et al. (2009) for Kentucky and is based 
on TOPMODEL code (Beven and Kirkby, 1979; Wolock, 
1993). The model consists of an integrated database of spa-
tially distributed basin attributes and algorithms to compute 
daily streamflow based on rainfall interpolated from observed 
records and estimated from high-resolution radar. The model 
predicts runoff separately for karst and non-karst areas and 
then sums the results for a final estimate of daily streamflow. 
The non-karst portion of the model uses conventional TOP-
MODEL methodology that integrates hillslope dynamics with 
soil parameters and includes basin-wide water withdrawals 
and discharges (Williamson et al., 2009). The karst portion 
implements a modified TOPMODEL approach that prescribes 
a unique runoff response to sinkhole-drained features. Thirty-
one basins (ranging from 17 to 1,564 square kilometers) were 
used to develop, calibrate, or test the model (Williamson 
et al., 2009). Several statistics were used to calibrate and 
evaluate performance of the non-karst portion of the model, 
and included bias (mean 0.10±0.18,), root mean square error 
(mean 2.47±0.98) and correlation (mean 0.73±0.10) (William-
son et al., 2009). Two of the six sites used in our evaluation 
were among the 31 basins used to develop the model. 

Table 1.  List of study sites, gage station identification number, drainage area of basin and length of observed daily streamflow record.  
Average depature is the average of all streamflow characteristic depatures (absolute values) at each site, for the rainfall-runoff model 
and the regional regression model.  RA8 [flow direction reversals]. Units: square kilometers [km2], percent [%]

Site name
USGS gage 

number
Basin area           

(km2)                              
Observed               

data range

Average departure (%)    
rainfall-runoff / regression

with RA8 without RA8

Poor Fork at Cumberland, KY 03400500 213 1941 - 1992 97 / 21 24 / 21

Lynn Camp Creek at Corbin, KY 03404900 137 1974 - 2005 119 / 26 43 / 27

Rockcastle River at Billows, KY 03406500 1,564 1937 - 2005 143 / 26 79 / 27

Little River near Cadiz, KY 03438000 489 1941 - 2005 67 / 16 42 / 14

Clarks River at Almo, KY 03610200 299 1983 - 2005 117 / 44 41 / 46

West Fork Clarks River near Brewers, KY 03610545 177 1969 - 1994 88 / 21 32 / 22
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In this study, we used the rainfall-runoff model to simu-
late daily mean streamflow at six sites for the period 1948 
to 2006. For computation of streamflow characteristics, this 
output was censored to include only the date range matching 
the observed period of record at each site (Table 1). 

Regional Regression Model

The regional regression model used in this study was 
developed for the Cumberland and Tennessee River basins and 
estimates specific streamflow characteristics directly through 
linear multivariate regression equations (Knight et al., 2011). 
Independent variables used in the regional regression model 
represent four categories: (1) climate data, such as monthly 
mean precipitation, (2) land use percentages, such as percent 
forest and agriculture, (3) physical landscape features, such as 
mean elevation, and (4) regional indicators, such as percent 
basin within a given ecoregion. The regional regression model 
consists of 19 separate multivariate regression equations, each 
of which predicts a single streamflow characteristic. Each 
equation contains 6 to 12 independent variables derived from 
GIS data layers (Knight et al., 2011). All six sites used in this 
study (Figure 1) are among the 231 sites in the Tennessee and 
Cumberland River basins used to develop the regional regres-
sion model (Knight et al., 2011).

Calculating Streamflow Characteristics

For each of the six sites (Table 1), 19 streamflow charac-
teristics were computed in three sets: observed, rainfall-runoff 
model estimates, and regional regression model estimates. 
Streamflow characteristics describe aspects of ecological 
flow regime (definitions in Appendix A) and are identified as 
having ecological significance in the Tennessee River basin 
(Knight et al., 2008; 2011). The Hydrologic Integrity Tool 
(Henriksen et al., 2006) was used to calculate streamflow 
characteristics from observed streamflow data and from the 
estimated streamflow from the rainfall-runoff model. The 
same streamflow characteristics were predicted directly by the 
regional regression model. At each site, the percent differ-
ences between predicted and observed streamflow charac-
teristics were calculated for both models [(model prediction 
– observed) / observed * 100]. 

Comparison of Model Estimates

All model estimates of streamflow characteristics have an 
element of uncertainty. In addition, the inherent variability of 
streamflow introduces uncertainty independent of model error. 
For example, mean annual streamflow at a site differs depending 
on the period of record chosen. Kennard et al. (2010) estimated 
a 20 to 30 percent difference for a variety of streamflow charac-
teristics when comparing a 75-year daily record to a 15-year or 
30-year period. For this paper, we adopted this band of hydro-
logic uncertainty (+/- 30 percent) for comparing departures of 
estimated values from observed streamflow characteristics. 

Results
Observed and predicted streamflow characteristics 

typically vary over one order of magnitude (Table 2). The 
rainfall-runoff model underestimates the observed variability 
(predicted range of estimates is narrower than observed range) 
for all but three characteristics. The regional regression model 
underestimates the observed variability for all but two charac-
teristics and generally has a narrower predicted range than the 
rainfall-runoff model (Table 2). Mean annual runoff (MA41) 
had a narrower observed range than all but two characteristics, 
which was closely approximated by the regional regression 
model and underestimated by about 40 percent by the rainfall-
runoff model. The greatest variation in ranges was within the 
streamflow magnitude characteristics (Table 2).

Considered across all 228 trials (19 characteristics, 2 
models, 6 basins), no basin or group of basins stands out in 
terms of overall model accuracy (Table 2). In contrast, one or 
both models generally predicted some characteristics more 
accurately than others. For the rainfall-runoff model, eight 
streamflow characteristics display a positive or negative bias 
across all six sites. The rainfall-runoff model over-predicted 
E85, Sep_med, TA1, RA7 and RA8 and under-predicted 
ML18, DL6 and TH1 (Table 2) at all six sites. Biases are not 
as pronounced for the regional regression model (Table 2).

Model Performance 
The regional regression model generally provides more 

accurate predictions than the rainfall-runoff model (Fig-
ure 2A). Median departures for 13 of 19 predicted streamflow 
characteristics from the rainfall-runoff model were outside 
the +/- 30 percent band of hydrologic uncertainty described 
above (Figure 2A). Most of these departures were between 
30 and 50 percent and a few were greater than 100 percent. In 
contrast, for the regional regression model, median departures 
for only two characteristics fell outside the band of hydro-
logic uncertainty. Twelve departures were less than 10 percent 
(Figure 2A). 

Three characteristics, RA8, E85, and Sep_med, represent 
the largest departures for the rainfall-runoff model. RA8 (aver-
age number of days per year when the slope of the hydrograph 
changes sign), indicated a deficiency (1,342 percent departure) 
in the rainfall-runoff model and plotted outside the range of 
Figure 2A. This deficiency is consistent with other studies 
concerning the predictive ability of regression and simula-
tion models to describe rate and frequency of daily rises and 
falls (Richter et al., 1997). For both models, the large rela-
tive departures of E85 (streamflow exceeded 85 percent of 
the time) and Sep_med (median September daily streamflow) 
reflect the small absolute magnitudes of these characteristics 
(Figure 2A and Table 2).

The range of departures and lack of uniformity for a 
given site indicate a basic problem in the application of any 
model: calibration on any single characteristic cannot be 
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shown to predict other characteristics accurately. In many 
models, calibration on the mean departures or mean daily 
discharge may equate to a calibration on MA41 (mean annual 
runoff). The rainfall-runoff model predicted MA41 within 
1 percent of the observed value for three sites (03400500, 
03404900, and 03406500) and although the model appears 
to be well calibrated, departures for other characteristics at 
these three sites were much greater (Table 2). In fact, the 
rainfall-runoff model for Rockcastle River at Billows, Ken-
tucky (03406500), a calibration site, predicted MA41 within 
1 percent of the observed value but also had the greatest aver-
age departure across all characteristics (142 percent, Table 1). 
The regional regression model avoids this issue by having an 
independently calibrated equation for each characteristic.

Implications for Ecological 
Flow Studies 

Ecological flow studies aim to predict the ecological 
effects of streamflow alteration triggered by changes in land 
cover, climate, impoundments, water withdrawals, and similar 
factors (Richter et al., 1996; Richter et al., 1997; Kennen et 
al., 2008; Carlisle et al., 2010). Among several key issues 
identified by Knight et al. (2011) is the question of which 
types of conceptual and mathematical models best address the 
effect of hydrologic alteration on ecologic potential.

The accuracy of streamflow-characteristic predictions 
is important because of the potential consequences a poor 
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prediction can have on estimates of ecological health. For 
example, Knight et al. (2008) found that the rate of streamflow 
recession (RA7) is related to the specialized insectivore score 
using an 80th-percentile upper-bound relationship (quantile 
regression) in the Tennessee River valley 

	 Y=1.082+4.26X	

where X is the predicted streamflow characteristic value, and 
Y is the resulting specialized insectivore score. This quan-
tile regression line can be seen to represent the potential for 
specialized insectivore score based on the rate of streamflow 
recession (Figure 2B). Using this equation, an observed RA7 
value of -0.159 (site 03406500) yields a potential insectivore 
score of 0.405. Predictions of RA7 from the rainfall-runoff 
model (-0.073) and the regional regression model (-0.144) 
produce potential specialized insectivore scores of 0.771 and 
0.469, respectively; these scores are 90 and 16 percent differ-
ent, respectively, from the score estimated from the observed 
streamflow characteristic. 

Over or under estimation of RA7 may have the effect of 
misstating the hydrologic suitability for specialized insecti-
vores (Figure 2B). The steep slope for this linear flow-ecology 
relationship (Knight et al., 2008) amplifies the influence 
of prediction error on the resulting estimate of ecological 
potential. Thus for the regional regression model at this site, 
a hydrologic error of 9 percent produces a 16 percent over-
estimation of the potential insectivore score. Additionally, a 
54 percent hydrologic error produced by the rainfall-runoff 
model translates into a 90 percent overestimation of the poten-
tial insectivore score at this site. Overstatement of background 
hydrologic suitability could translate into an understatement of 
the relative risk of degradation at a site and underestimate the 
impact of alteration on biota.

One advantage of regression models is a set of well 
established procedures to quantify error, for example root 
mean square error (RMSE). In statistical applications, RMSE 
is the mathematical equivalent of standard deviation and +/- 1 
RMSE from predicted values should encompass approxi-
mately 68 percent of the observed values. At Clarks River at 
Almo, Kentucky (03610200), the regional regression model 
predicted a value of -0.132, with +/- 1 RMSE ranging from 
-0.106 to -0.163 for RA7 (based on Table 2 in Knight et al., 
2011), bracketing the observed value of -0.154 (Figure 2B). 
Overall, approximately 70 percent of observed streamflow 
characteristics were encompassed by +/- 1 RMSE from their 
corresponding predicted value. Applied to ecological flow 
studies, RMSE can be related to ecological metrics through 
predicted streamflow characteristics. However, the range of 
uncertainty in streamflow characteristics and ecological poten-
tial has been minimally explored in the literature and without 
serious assessment of uncertainty, results of ecological flow 
studies will be open to challenge in public policy and decision-
making contexts.

Conclusion
At the foundation of ecological flow studies is the 

requirement of reliable estimates of ecologically-relevant 
streamflow characteristics. Typically, the source of streamflow 
data for ecological flow studies is a simulated daily hydro-
graph produced by a rainfall-runoff model. Our analysis chal-
lenges the presumed suitability of these models for describing 
ecological flow regimes at ungaged sites. The regional regres-
sion model did not in every case produce better results but 
it was more reliable overall, was less likely to produce large 
departures from observed values, and provided some measure 
of relative uncertainty. Our results highlight the importance 
of (1) prior selection of modeled streamflow characteristics, 
(2) targeted model calibration using those characteristics, 
and (3) quantification of model error. Without such provi-
sions, widespread application of general hydrologic models to 
ecological flow studies is problematic. The difference in model 
performance does not necessarily indicate any shortcoming in 
this rainfall-runoff model for general hydrologic simulation, 
but it does point to limitations in how such models can be 
effectively applied in ecological flow studies.
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Appendix A.  Definitions of hydrologic metrics predicted using regression analysis. [adapted and modified from Knight et al., 2008].

Streamflow characteristics Definition (units)

M
ag

ni
tu

de

E85 – Streamflow value exceeded 
85-percent of time

85-percent exceedance of daily mean streamflow for the period of record normalized 
by the watershed area (cfsm).

MA26 – Variability of March streamflow Compute the standard deviation for March streamflow and divide by the mean 
streamflow for March. (percent)

MA41 – Mean annual runoff Compute the annual mean daily streamflow and divide by the drainage area. (cubic 
feet per second (cfs) per square mile (cfsm))

MH10 – Maximum October streamflow Maximum October streamflow across the period of record divided by watershed area. 
(cfsm)

ML18  – Variability in base flow Standard deviation of the ratios of 7-day moving average flows to mean annual flows 
for each year multiplied by 100. (percent)

ML20 – Base flow Divide the daily flow record into 5-day blocks. Assign the minimum flow for the 
block as a base flow for that block if 90 percent of that minimum flow is less than 
the minimum flows for the blocks on either side. Otherwise, set it to zero. Fill in 
the zero values using linear interpolation. Compute the total flow for the entire 
record and the total base flow for the entire record. ML20 is the ratio of total flow 
to total base flow. (dimensionless)

Sep_med  – Median September daily 
streamflow

Calculate the median of daily mean streamflow values for the period of record that 
occurred in the month of September normalized by watershed area (cfsm).

Fr
eq

ue
nc

y

FH6 – Frequency of moderate flooding 
(three times median annual 
flow)

Average number of high-flow events per year that are equal to or greater than three 
times the median annual flow for the period of record. (number per year)

FH7 – Frequency of moderate flooding 
(seven times median annual 
flow)

Average number of high-flow events per year that are equal to or greater than seven 
times the median annual flow for the period of record. (number per year)

FL2 – Variability in low-pulse count Coefficient of variation for the number of annual occurrences of daily flows less than 
the 25th percentile. (dimensionless)

D
ur

at
io

n

DH13 – Average 30-day maximum Average over the period of record of the annual maximum of 30-day moving average 
flows divided by the median for the entire record. (dimensionless)

DH16 – Variability in high-pulse dura-
tion

Standard deviation for the yearly average high-flow pulse durations (daily flow 
greater than the 75th percentile). (percent)

DL6 – Variability of annual minimum 
daily average streamflow

Standard deviation for the minimum daily average streamflow.  Multiply by 100 and 
divide by the mean streamflow for the period. (percent)

Ti
m

in
g

TA1 – Constancy Measures the stability of flow regimes by dividing daily flows into pre-determined 
flow classes. (dimensionless)

TH1 – Annual maximum flow Julian date of annual maximum flow occurrence. (Julian day)

TL1 – Annual minimum flow Julian date of annual minimum flow occurrence. (Julian day)

Ra
te

 o
f C

ha
ng

e RA5 – Number of day rises Compute the number of days in which the flow is greater than the previous day di-
vided by the total number of days in the flow record. (dimensionless)

RA7 – Rate of streamflow recession Median change in log of flow for days in which the change is negative across the 
entire flow record. (flow units per day)

RA8 – Flow direction reversals Average number of days per year when flow changes from rising to falling (or from 
falling to rising). (number per year)


